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ABSTRACT 

We study the number  of zeros of Abelian integrals for the reversible codi- 

mension four quadratic centers Q3 R [7 Q4, when we per turb  such systems 

inside the class of all polynomial systems of degree n. 

1. I n t r o d u c t i o n  

The paper is concerned with the Abelian integrals for the perturbations of the 

planar polynomial system 

(1.1)~ ~ j" = H,/M + ef(x, y), 
- H x / M  + eg(x, y), ( 

where e is a small parameter,  H ( x , y )  is a first integral of system (1.1)0 and 

M(x,  y) is the integrating factor, Hy/M, Hx/M, f(x, y) and g(x, y) are polyno- 

mials of x and y, max{degf(x, y), degg(x,  y)} = n. The system (1.1)0 is called 

an i n t e g r a b l e  s y s t e m  ( H a m i l t o n i a n  s y s t e m ,  if M(x,y) = 1). We assume 

* Supported by grants from NSF of China (No. 10101031), Guangdong Natural 
Science Foundation (No. 001289), and NSF of Sun Yat-sen University for younger 
teachers. 

** The author wishes to thank Prof. R. Conti and Prof. G. Villari for their dis- 
cussions, and Dipartimento di Matematica "U. Dini", Universith Degli Studi di 
Firenze for its support and hospitality during the period when this paper was 
elaborated. Y. Zhao is gratehll to the referee for helpful suggestions. 
Received September 30, 2001 

125 



126 Y. ZHAO Isr. J. Math. 

that system (1.1)0 has at least one center. The Abelian integral for (1.1)~ is 

defined as 

(1.2) I ( h ) = ~ r  - M ( x , y ) f ( x , y ) d y + M ( x , y ) g ( x , y ) d x ,  h c E .  

Here Fh is the compact component of the curve H(x ,y )  = h (i.e., the period 

annulus of system (1.1)0); E is the maximal interval of existence of Fh. Finding 

the upper bound for the number of zeros of I (h)  is called the weakened Hilbert 

16th problem, posed by Arnold [A]. It is well known that,  if I (h)  ~ O, then the 

total number of isolated zeros of I (h)  (taking into account their multiplicities) 

is an upper bound for the number of limit cycles of (1.1)~, which tend to some 

period annulus Fh. 

Up to now most of the results on the weakened Hilbert 16th problem con- 

cerned the Hamiltonian cases; see [G1, G2, HI, I3, P1, P2, RZh, ZLL, ZZ, IyY1, 

IyY2, Y, NY] and references therein. For non-Hamiltonian integrable systems, 

since M ( x ,  y) is not a constant, the functions M ( x ,  y ) f ( x ,  y), M ( x ,  y)g(x,  y) and 

H ( x ,  y) are in general not polynomials. The study of Abelian integrals in these 

case is much more difficult than the Hamiltonian cases. Only a few papers dealt 

with integrable cases; see [I1, I2, Zh, ZLLZ] etc. 

In this paper, we discuss the Abelian integral for a quadratic integrable system. 

The quadratic centers are divided into several types. The most simple classifica- 

tion can be found in [Zh]. Taking a complex z = x + i y  and using the terminology 

from [Zh], the list of quadratic centers at z = 0 looks therefore as follows: 

= - i z  - z 2 + 21zl 2 + (b + ic)52, Hamiltonian (Q3H), 

= - i z  + az 2 + 21z] 2 + b52, reversible (Q3n), 

= - i z  + 4z 2 + 21zt 2 + (b + @)52, lb + ic I = 2, codimension four (Q4), 

= - i z  + z 2 + (b + ic)22, generalized Lotka-Volterra (QLV), 

z = - i z  + ~2, Hamiltonian triangle. 

Important  work was finished in the paper [I2] by Iliev, who studied the bifurca- 

tion of limit cycles in the general quadratic perturbation of a quadratic integrable 

system and gave the corresponding bifurcation functions, which are Abelian in- 

tegral I (h)  or higher order Melnikov functions. For the cases of the Hamiltonian 

triangle and QH, the number of zeros of I (h)  has been estimated in [G1] and 

[HI], respectively. 

The present paper deals with the quadratic case in the situation where un- 

perturbed vector field (1.1)0 belongs to the intersection of two components of a 

center manifold, namely the reversible Q3 R and the codimension four Q4. The 
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intersection Q3 n A Q4 consists of two single syst, ems Q~ (see [I1]) 

(1.3) ~: = - i z  + 4z 2 + 2[z[ 2 :i: 252. 

In the papers [I1] and [I2], the author proved that  the cyclicity of the period 

annulus of system Q4 i is at most three under quadratic perturbations. The 

purpose of this paper  is to find an upper bound of the number of zeros of Abelian 

integral (1.2) for Q~ = Q3 n A Q4 when we perturb such a system inside the class 

of all polynomial systems of degree n. Our main result is the following 

THEOREM 1.1: The number of isolated zeros of Abelian integral I(h) in E does 

not exceed 5[(n - 1)/2] - 1, n _> 3, for system Q+ and 21n - 12, n _> 1, for Q4,  

respectively. 

For n = 1, 2, I(h) has at most 4 zeros in E for system Q+. 

Remark 1.2: In the paper [ZLLZ], we give a linear estimate of the number of 

zeros of Abelian integrals for quadratic centers having ahnost all their orbits 

formed by cubic curves. However, Q4 is not contained in any cases which are 

studied in [ZLLZ], although it can be reduced to a cubic integrable vector field 

whose orbits are almost all cubic curves; see section 2 for the details. This is 

because the original orbits of Q~ are almost all algebraic curves of degree 6. 

2. The express ion for Abel ian integrals 

In this section, we are going to express the Abelian integral I(h) as a linear 

combination of several basic integrals. To do this, we begin this section with the 

following lemma: 

LEMMA 2.1: (i) Corresponding to system Q4, the perturbed system (1.1)~ can 

be reduced to the following normal form, 

(2.1)~ { ~ = xy + e x - 2 f ( x  3, y), 
~l y2 _ j.3/3 + 1/3 + eg(x 3, y). 

A first integral of system (2.1)0 is 

(2.2) H(x , y )  = x -2 y2 + -~x + -6 = h 

with integrating factor M(x ,  y) = x -3. In these coordinates, the ovals Fh C 

{H = h} are defined for h E E = (1/2, +cx~) and the critical level H = 1/2 

corresponds to the center (1, 0). 
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(ii) Corresponding to system Q+, the perturbed sys tem (1.1)~ can be reduced 
to 

f ~ = 2xy + e/(x, y), 
(2.3)~ ~) = 2(x - x 2 + 2y 2) + eg(x, y). 

A Iirst integral  of  (2.3)0 is 

(2.4) H ( x , y ) = x - 4 ( y 2 - x 2 + ~ x ) = h  

with integrating factor M(x, y) = x -5 The period annulus rh  is de/~ned in the 

interval E = ( - 1 / 3 ,  O) and the critical level H = - 1 / 3  corresponds to the center  

(1,o). 
In the above system (2.1)~ and (2.3)~, f (x ,  y) and g(x, y) are polynomials of 

x, y with max{degf(x,  y), degg(x ,  y)} = n. 

Proof." (i) Taking a real coordinate  (x, y), the sys tem Q4 has a first integral  

H -- X-2/3(y2/2 + X/48 + 1/96) with integrat ing factor M = X -5/3, where 

X = 1 + 12x; see appendix  of [I1]. Performing a suitable scaling of y, H and h, 

we can assume H = x-2/3(y2/2 + x/3 + 1/6) = h with M = x -5/3. Changing x 

into x 3, we get (2.1)~. 

(ii) Using the same a rguments  as above. 

Now we introduce some notat ions.  Throughou t  this paper ,  we define, for h E E 

and any i , j ,  i . . . . .  - 1 , 0 ,  1 . . . . .  j = 0 , 1 , 2 , . . . ,  

(2.5) Ii,j(h) = ~_ M(x, y)xiyJdx, Ji(h)  = Zi,l(h), 
d l "  h 

where Fh, E and M(x,y)  are defined in L e m m a  2.1 (i) and L e m m a  2.1 (ii), 

respectively. Wi thou t  loss of generality, suppose tha t  Fh has negative (clock- 

wise) orientat ion.  Obviously, Ii,2k(h) = 0, k = 0, 1, 2 , . . .  for bo th  cases. 

To be more concrete, in the following we only consider the case Q4  (i.e., sys tem 

(2.1)~) in L e m m a  2.2 2.3 and Propos i t ion  2.4. 

LEMMA 2.2: The Abelian integral I(h), related to (2.1)~, can be expressed in 

the form 

•--1 

(2.6) I(h) -- E ciJ3i + qi-3,5,  
i = - I  

where ~ and c~, i = - 1 ,  0, 1 . . . .  are real constants, n >_ 4. 
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Proof  By part ial  integration, we get 

~r 1 ~ x3i-Sdyj+l - 3 i -  5 I (2.7) Mx-2x3iyJHy = j +--~ " -~ ~_ ~ 3(i-1),j+1. 
h h 

Therefore,  we only consider I3i,j( h ), i >_ -1 .  
It follows from (2.2) tha t  

1 1 - 3  
(2.8) x-2YOYox x-3y2 ÷ -g - 5x  = O. 

Multiplying (2.8) by xiyJ-2dx and integrating over Fh, we get 

fv  + 1 I (2.9) , x i -2YJ- tdY - Ii,j ÷ ~( i+3,j-2 - Ii,j-2) : O. 

By part ial  integrations, we get from (2.9) tha t  

_ 1 I _ (2.10) i + j - 2 ii,j _= 5( i--k3,j-2 Ii+j-2). 
3 

If i _> 0 , j  > 3 and j is odd, then i + j - 2 > 0. By induction for j ,  we obtain 

from (2.10) tha t  Ii,j, i > 0 , j  _> 3 and j is odd, can be expressed as 

( j - - l ) / 2  

(2.11) l+,j : E ++]++3k, 
k=O 

where +i denotes real constants. It follows from (2.10) tha t  [-3,j, j is odd, j >_ 3, 

can be expressed in the form 

j - -2  

(2.12) I-3,j = E bklo,k + bI-a,,+, j > 7, 
k=5  

where b k and b are real constants, k is odd. Introducing (i , j)  = ( - 3 , 5 )  into 
(2.10), we have 

(2.13) I-3,3 : 1o,3. 

The  expression (2.6) follows from (2.11), (2.12) and (2.13). 

LEMMA 2.3: Yi(h),i  ~_ 4, related to (2.2), can be expressed in the form 

(2.14) Ji(h) = a+i,o(h)Jo +/3i,l(h)J1 + 7i,2(h)J2, 

where ai,o(h),/3i,l(h) and 7i,2(h) are polynomials of  h with degc+i,o(h) <_ i - 

3, deg/3+,t(h) < i - 4, degy+,2(h) < i - 2. For  i = - 1 , - 3 , 3 ,  

1 1 
(2.15) J - ,  = .]2, .1_3 = g ( - J o  + 12hJz), J3 = g(2Jo + 6h J2). 
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Rewrite (2.2) in the form 

1 2 1 3 1 
~Y + ~ + -~ = hx ~, 

which yields 

Isr. J. Math. 

which implies 

(2.19) 

Proof: 

(2.21) 

1 
gi - 2i _~[6h( i  - 2 ) J i - i  + ( - i  + 5)Ji-3]. 

The results of this lemma follow from (2.19) by induction for i. 

PROPOSITION 2.4: I f  n > 3, thezl the Abel ian  integral I(h), related to (2.1)~, 
can be expressed  in the  form 

(2.20) I ( h )  = a (h )do  + / 3 ( h ) J i  + "y(h)J2, 

where  a ( h ) ,  ~ (h )  and  7(h) are po lynomia l s  o f h  wi th  deg a(h) _< 3n-6 ,  deg/3(h) _< 
3n - 7 and deg 7(h) <__ 3n - 5. 

For n = 0, 1, 2, dega(h)  = 0,/3(h) =- 0 and  deg 7(h) _< 1. 

It follows from (2.10), (2.13), (2.15) and (2.16) that 

/0,3 = J3 - Jo, I-3,5 = 2hi -1 ,3  - Io,3, I-1,3 -= 2h J1 - J2. 

By (2.21) and (2.15), we have 

3 5h  j2 (2.22) •-3,5 = -~ Jo + 4h2 J1 - 

The proposition follows from Lemma 2.2, Lemma 2.3 and (2.21), (2.22). 

31 11 (2.16) Ii,j = 3 h I i - l . j  --  ~ i - 3 , j + 2  . . . .  2 ~-3'3" 

It follows from (2.10) that 

(2.17) 3(i + j - 3)I i -3, j+2 = ( j  + 2)(I i , j  - I i -3 , j ) .  

Introducing (i, j )  = (2, 1) into (2.17), one obtains J-1  = J2. Eliminating I{-3,j+2 
from (2.16) and (2.17), we have 

(2.18) (2i + 3j - 4)Ii , j  = 6h( i  + j - 3 ) I i_ l , j  + ( - i  + 5)Li_3,j, 
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PROPOSITION 2.5: I f n  ~ 7, then the Abel ian integral I (h) ,  related to (2.3)~, is 

expressed in the form 

1 
(2.23) I (h )  - h[(n_3)/2] J(h) ,  J (h )  = ~(h)Jo +/3(h)J1 + "7(h)J2, 

where c~(h),/3(h) and ~/( h ) are polynomials  o f  h with 

ma3:{deg a (h ) ,  deg 9(h) ,  deg 7(h)} < [(n - 3)/2]; 

[s] denotes the entire part  o f  s. 

I f  n = 1, 2, 3, then I (h )  = J (h)  with deg a(h)  = deg/3(h) = deg 7(h) = O; i f  

n = 4, 5, 6, then I (h )  = . ] (h) /h  with degc~(h) = deg/3(h) = deg 7(h) = 0. 

Proo~ Using the same argulnents  as in the proof  of Proposi t ion  2.4, we can get 

(2.23). Hence, we only sketch here the outline of the proof. 

At first, we prove tha t  I (h )  can be denoted in the form I (h )  ~-a = E i = _ ~  e~Ji, 
where ei, i = - 1 ,  0, 1 . . . . .  is a real constant .  Then  we obta in  

3h(i - 2)Ji = - 3 ( i  - 5)Ji_2 + (2i - 13)Ji_3, 

which means  Ji (h) can be expressed in the tbrm 

1 
J -1  = Jo, .fi(h) - h[(i_~l/2] (C%o(h)Jo +/3i,1 (h)Ja + %2(h)J2) ,  i >_ 4. 

Here c~i,o(h),/3i,l(h), %2(h)  are polynomials  of h. If  4 < i < 7, then deg ai,o(h) = 

deg/3i,i(h) = deg?i ,2(h)  = 0; if i _> 8, then deg ai,o(h) _< [(i - 8)/6] + ~'( i  - 6), 

deg/3i,i(h) _< [(i - 6)/6] + 5c(i - 4), d e g % l ( h )  < [(i - 4)/6] + ~:(i - 2), where 

1, i f i = 6 k ,  
5 r ( i ) =  O, i f i ¢ 6 k ,  k = O ,  1 ,2 , . . . .  

For i = 3, we have 
1 

J3 = ~ ( - 7 J 0  + 6J1). 

Using the above results, we get (2.23). 

3. The  Picard-Fuchs  equat ion  and relevant results 

In this section, we derive the P icard-Fuehs  equat ion satisfied by J0, J1 and J2. 

This  is crucial for our analysis. 
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LEMMA 3.1: The Abelian integrals Jo(h), Jl(h),  J2(h), related to (2.2), satisfy 
the following Pieard-Fuchs equation: 

(3.1) 

Proof'. 

(3.2) 

which implies 

(3.3) 

(h lj2 
J1 = 0 J} . 
-12 - 1 / 3  2:  2h/3 J~ 

It follows from (2.2) that 

Oy _ X 2 
Oh y '  

J~(h) ~F i 30Y dx ~F xi-1 
- = dx. = x ~-~ Y h h 

Using (2.2) again, we get 

Ji(h) = SF xi-3y2dx = f r  xi-3(2hx2 - 2x3 /3-1 /3 )dx  
(3.4) h Y h Y 

2 , 1 j ,  
=2hJ~ - 5J~+1 - 5 i-2- 

Substituting i = 0 into (3.4), we get 

(3.5) 

The equality (2.19) yields 

(3.6) 

1 j ,  
J o = 2 h 4 - ~ J ~ - 5  -2. 

J-2 3 h j  ° + 1 = 2 ~J1. 

Inserting (3.6) into (3.5), one gets the first equation of (3.1). By the same argu- 
ments, the second and third equations follow. 

COROLLARY 3.2: The Abelian integrals Jo, J1, ,[2, related to (2.2), satisfy the 
following equation: 

(3.7) 

Proo~ 

(Sh 3 - 1 )  J~' = lh  J~ 
J.~' - 4h 2 J2 ] "  

Differentiating both sides of (3.1), we get 

0 ,  h -1 /2  01 
-J1  = 0 2h 
1 i 5J~ -1 /3  0 2h/3 J~'/ 

which implies (3.7). 
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LEMMA 3.3: 

integrals Jo, J1, J2, related to (2.4): 
The following Picard Fuchs equation is satisfied by the Abelian 

(21 i o)(.io) 
(3.s) 6h(3h+l) J i | - -  - -  3(5h+2) 0 

J~ ] 1 3(3h + 1) J2 

Proof: Use the same arguments as in the proof of Lemma 3.1. 

For the integrable system (2.1)0, the period annulus Fh is in the right half- 

plane, which means 

J~(h) = fx : (h )  ,37i-1 
2a~(h) v/2hx 2 - 2x3/3 - 1/3 dx 

> 0, 

where (Xl (h), 0) and (x2(h), 0) are intersection points of Fh and the x-axis. Using 

the same arguments, we know that Ji(h), related to (2.3)0, satisfies Ji(h) :> 0. 

Hence, we can define, related to (2.1)~ and (2.3)~ respectively, 

(3.9) w ( h ) -  Z~(h) v ( h ) -  Jl(h) 
J[(h)'  Jo(h)" 

By (3.7) and (3.8), we get 

COROLLARY 3.4: (i) The ratio ~(h) = .J~/J[, related to (2.1)~, satisfies the 

following Riccati equation: 

(3.10) (8h 3 - 1)w' = -2hw 2 + 8h2w - 1. 

(ii) The ratio v(h) = J1/ Jo, related to (2.3)~, satisfies the following equation: 

(3.11) 6h(3h + 1)v' = 3hv 2 - 6(h - 1)v - 7. 

4. E s t i m a t i o n  for  Q4 

In this section, we investigate the number of zeros of I(h) for Q4- To do this, we 

reduce the initial problem to counting the number of isolated zeros of a certain 

integral which is expressed as a linear combination of only two basic integrals, 

J~ and J~. 

In this and the next section, (~i(h),/3i(h), 7i(h), i = 0, 1, 2 . . . . .  denote polyno- 

mials of h and #¢ (h )  denotes the number of zeros of 0(h). 

It follows from (2.20) and (3.1) that I(h) and ['(h) can be expressed in the 

fornl  

I(h) =a0(h)J~ + 3o(h)J; + 70(h)J~, 
(4.1) 

I '(h) +/31(h)Ji + 
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where dega0 (h )  < 3n - 5, degfl0(h) _< 3n - 6, deg'y0(h) _< 3n - 4, d e g a l ( h )  < 

3n - 6, degf l l (h )  <_ 3n - 7, deg 'y l (h)  <_ 3n - 5. El iminat ing  J~ f rom the above 

two equations,  we have 

(4.2) ao(h)I'(h) = al(h)I(h) + M(h) ,  

where M(h) has the form 

(4.3) M(h) = f l2(h)J;  + 72(h)J~ 

with deg fl2(h) _< 6n - 12 and deg72(h)  _< 6n - 10. 

In what  follows we s tudy the relat ion of #I(h) and #M(h). Suppose hi and 

h2 are two consecutive simple zeros of I (h ) ;  then  F(hl)I'(h~) < 0. By (4.2), we 

know tha t  

 o(hdF(hd = i = 1 ,2 .  

Hence, either ao(h) has at  least one zero in (hi ,  h2) or M(hl)M(h2) < 0, which 

implies tha t  there exists h* E (hi, h2) such tha t  a0(h*)  = 0 or M(h*) = 0. On the 

other  hand,  i f I ( / t )  = I'(h) . . . . .  I(k)(/t) = 0, k _> 1, then M(/t)  = 0. Therefore,  

between any two consecutive zeros ( taking into account their multiplicities) of 

I(h), there must  exists at  least one zero of a0(h)  or M(h). This means  

(4.4) #I(h) <_ #ao(h) + #M(h) + 1. 

Finally, we only need to consider #M(h). Denote  

M(h) 
(4.5) g,(h) - J~(h) - fl2(h) + 72(h)w. 

Obviously, #~/,(h) = #M(h). I t  follows from (3.10) tha t  .~b(h) satisfies the fol- 

lowing Riccat i  equation: 

(4.6) (8h 3 - 1)'y2(h)'~/,' = -2h~/, 2 + Rl(h)t/,  + R2(h),  

where R1 (h) and R2(h) are polynomials  of h, deg R2(h) <_ 1 2 n - 2 0 .  By the same 

a rguments  as in the proof  of (4.4), we have 

(4.7) # ¢ ( h )  < # ( ( 8 h  3 - 1 ) ~ ( h ) )  + # R ~ ( h )  + 1. 

Since I(h) is defined in E = (1/2, +c~) ,  we conclude tha t  # ( 8 h  3 - 1) = 0 in E. 

The  inequalities (4.4) and (4.7) imply tha t  

#I(h) <#ao(h) + #3~2(h) + #R2(h) + 2 

< deg ao(h)  + deg'~2(h) + deg R2(h) + 2 

<21n  - 33, 
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where n _> 3. Using the same arguments, we get #I(h) = 0 for n = 0 and 

#I(h) < 9 for n = 1, 2. The proof for Q4 is finished. 

5. Estimation for Q+ 

For the case Q+, we will get a better upper bound of #I(h) (i.e. #J(h)) by using 

the argument principle. As in the last section, we are going to reduce the initial 

problem to counting the number of zeros of a certain Abelian integral which is 

a combination of only two basic integrals, J0 and J1. From (2.23) and (3.8) we 

have 

(5.1) 6h(3h + 1)J'(h) = a , (h)Jo  +/31(h)J1 + 7, (h)J2, 

where max{degal(h),deg/3~(h),deg'y,(h)} <_ [ ( n -  1)/2]. Eliminating J2 from 

(5.1) and (2.23), one gets 

(5.2) 6h(ah + 1)'~(h)J' = %(h)g + G(h). 

Here G(h) has the form 

(5.3) G(h) = a2(h)Jo + ~2(h)J1 

with max{deg c~2(h), deg/32(h)} = 2 [ (n -  1 ) /2 ] -  1. By the same arguments as in 

section 4, we have 

(5.4) #J(h) <_ #G(h) + #?(h) + 1. 

From now on we begin to estimate #G(h) by the argument principle. Let 

J/(h), i = 0, 1, be the analytic continuation of Ji(h) fi'om E to complex domain 

C. This means that Jo and .]l satisfy (3.8) and .]/(h)lhcZ = Ji(h). 

LEMIVlA 5.1: (i) .~(h), i = 0, 1, is analytic at h = - 1 / 3  and .Ii(h)/Jo(h) --+ 1 as 

h + - 1 / 3 .  

(ii) o~(h), i = 0, 1, has the following e.xpansion near h = 0: 

(5 .5 )  

(0~) =cO( 1 +  ~ h +  £-~sh21n(-h)245 105 2 - ~ - ' ' "  ) 
Jl ~ - ~hln(-h)  + -~-h + g-fgh ln(-h) +. . .  

' 

w h e r e  c o n s t a n t s ,  c ° > O. 
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(iii) Near h -~ co, we have 

~ h - '  + . . .  ") +c~(-h)5/6(21 

where c~,  c~ are real constants. 

"Jr" o ( h - 1 ) ]  ' 

Proof: Since the value h = - 1 / 3  corresponds to the center, we know that ~(h)  
is analytic at h = -1 /3 ;  see [R]. By the integral mean-value theorem, one gets 

J1/Jo --+ 1 as h --+ -1 /3 .  From (3.8), the vector (J0, J1) satisfies the following 
equation: 

(5.7) 6h(3h+l)dJ~'~ (21h  - 3 h  ) ( J o )  
~ f f l /  7- --7 3(5h  -'[- 2) g i  " 

Using analytic theory of ordinary differential equations [Ga, HI, we get (5.5) and 
(5.6). Noting Ji(0) > 0, we have c o > 0. Since ~(h)  is real analytic at h = - 1 / 3  

and system (5.7) has no other singular point in ( -oc ,  0), we conclude that Ji(h) 
0 and c~ are real constants, is a real analytic function in ( - ~ ,  0), which implies ci 

i=O,  1. 
Since (5.7) is a linear system with simple singular point, its solutions, including 

the vector (Jo, J1), are (single-valued or multiply-valued) analytic functions on 
complex domain C \{h  = 0, cx)}. To get the single-valued function on C, define 

= C \ { h l h  > 0}. 

By the above discussion, we have 

LEMMA 5.2:  ~(h) ,  i = 0, 1, is a single-valued analytic function on 7). 

LEMMA 5.3: In the expansion (5.6), c~c~  > O. 

Proof: In the proof of Lemma 5.1, we have known that J0(h) and Jl(h) are 

real analytic functions in the interval ( -co ,0) .  Therefore, the ratio u(h) = 
Jl(h)/Jo(h), h • ( -oc ,0) ,  satisfies the Riccati equation (3.11), which implies 

that the curve u(h) in the hv-plane is a trajectory of the system 

(5.8) { ~  = 6h(3h+  1), 
3hv 2 - 6(h - 1)v - 7. 

The system (5.8) has three critical points in the finite plane: an unstable node 
at (0, 7/6), a saddle at ( -1 /3 ,  1) and a stable node at ( -1 /3 ,  7). The vertical 
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zero isoclines h = - 1 / 3  and h = 0 are invariant lines of (5.8). The  zero isocline 

v±(h) ,  on which the vector field is horizontal,  is defined by the algebraic curve 

(5.9) K(h, v) = 3by 2 - 6(h - 1)v - 7 = 0, 

where 

(5.10) v+(h ) = 3(h - 1) 4- X/3(3h 2 + h + 3) 
3h 

which has the following properties: 

(1) v + ( - 1 / 3 )  = 1 , v - ( - 1 / 3 )  = 7, limh_~+~v+(h) = 2, l imh_~_~v+(h) = O, 

l i m h ~ + ~  v - ( h )  = 0, l i m h ~ _ ~  v - ( h )  = 2; 

(2) v + (h) has the following expansions near h = 0: 

7 2 5 
(5.11) v+(h)  = g + o(1), v - ( h )  = - ~  + g + o(1), 

which yields v+(0) = 7/6,  l imbo0-  v (h) = +oc,  limh--,0+ v+(h)  = -oo ;  

(3) if h • ( - o c , 0 ) ,  then v+(h) < v - ( h ) , d v + ( h ) / d h  > 0; if h • (0, +oc) ,  then 

v+(h) > v - ( h ) , d v + ( h ) / d h  > O. 

The  propert ies (1) and (2) are obtained by direct computat ion.  To prove (3), 

assume tha t  there exists h = h such tha t  dv+('h)/dh = 0. Differentiating (5.9) 

with respect to h, we have .v±(h) = 2 or v+(h)  = 0. However, K(h, 2) = 5 > 0 and 

/~(h, 0) = - 7  < 0, which yields contradictions. Hence dv+(h) /dh  ¢ 0. Proper ty  

(3) follows from (1), (2) and (5.10). 

Taking the Poincar~ t ransformations 

1 
h = = , v = = ,  d t = h 2 d w  and 

h h 

system (5.8) changes to the form 

and 

respectively. 

v* 1 dt = h*2dT, 
h - -  h-- 2, v =  h-- 2, 

{ £ = + 3), 
v 3 -24h -Th 3, 

t/* = h * ( - 3 v *  + 6h*(v* - h*) + 7h '3 ) ,  
~;* v*( -3v*  + 24v'h* + 7h '3) ,  

Therefore,  system (5.8) has two critical points (h, ~) = (0, 0) and 

(h*,v*) -- (0,0) at infinity. By Lemma 5.1, u ( - 1 / 3 )  -- 1, which means the 

curve u(h) tends to the saddle ( - 1 / 3 ,  1) as h --~ - 1 / 3 .  Since the t ra jec tory  

of (5.8) crosses the zero isocline v+(h) ,  h E ( - c o , - 1 / 3 ) ,  from the left hand 
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to the right hand and ~)[v=2 = 5 > 0, the curve u(h) must stay in the region 

{(h,v)[0 < v+(h) < v < 2 < v - ( h ) } ,  which implies u'(h) > 0, h E ( - c o , - 1 / 3 ) .  

As there are only two critical points (h,~)  = (0,0) and (h*,u*) = (0,0) at 

infinity, we conclude tha t  u(h) is the t ra jec tory  of system (5.8) s tar t ing from 

(h, ~) = (0,0) to the saddle ( - 1 / 3 ,  1); see Figure 1. Hence limh-~-oo u(h) = O. 
Noting u(h) > v+(h) > 0, one gets u(h) > O. 

If c~c~ = 0, then either limh-~-oo u(h) = 1/2 or u(h) = (7/18)h -1 + . . .  < 0 

as h --+ - o o ,  which yields a contradiction. Therefore c~c~ ~ O. Using (5.6) 

again, we obtain 

(5.12) .u(h) - J1 c~ ° ( _ h ) - l / 3  q_. . .  
Y0 - 

as h--+ - o o .  Since u(h) > 0 for h E ( - c o , - 1 / 3 ) ,  we have c~c~ > 0. The  

lemma is proved. 

l '/ 
,/~ 

.........-'~"-Ch) 
-.- ..... -~(:1/3,7} , 

/ / . . - - - -  

| . . . . - ' ;+Ch) 
~ . . . . ~  -1/3, ~) 

h = - 1 / 3  

Figure 1 

LEMMA 5.4: Suppose that S+ (resp. S_) is the upper (resp. the lower) side of 
the open cut {hlh E (0, +oo)}.  Then for h E S+, 

(i) Im(Jo(h)/J,(h)) ~ O, 
(ii) Ira Jr(h) ~ O. 

Proof: We only prove (i) and (ii) for h E S+. 
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(i) Suppose that there exists h = h i such that .]'l(h~) = 0; then ImJl(h~)  = 
Re J1 (h~) = 0. Since (.70 (h), .]1 (h)) is a solution of real analytic system (5.7), vec- 

tors (Imffo(h), Imffl(h))  and (ReJo(h), ReJl(h))  are two real analytic solutions 

of system (5.7), too. It follows from Liouville's formula that 

f h ah+l dh 
(5.13) W(h) = Re.~o ImJo = W(h~)e h; h(~h+,) 

Re J1 ImJ~ -- O. 

Hence, in the region {hl.]l(h ) ¢ 0, h • S+}, we have 

(5.14) i m  ~o(h) _ W(h)  _ O. 
J,(h) I.]l(h)l 2 

It follows from (5.6) and Lemma 5.3 that ~ro(h)/ffl(h ) ~ ( c ~ / c ~ ) ( - h )  1/3 as 

h -+ +oo. This implies that Im(ffo(h)/ffl(h)) # 0 as h --+ +oc, which contradicts 

(5.14). Hence, aT1(h) ¢ 0 for h • S+. 

Based on J71(h) ¢ 0, h • S+, we can define the ratio ffo(h)/ffl(h). Noting 

Im(ffo(h)/.']l(h,)) = -W(h) / ] f f l l  2 and using the same arguments as above, we 

get !m(Yo(h)/Yl(h)) # 0 for h, • S+. 
(ii) It is obvious that ¢(h) = Imf f l (h ) / ImYo(h) ,h  • S+, is a trajectory of 

system (5.8). Using (5.5) and (5.6), we have 

4 2 
¢(h) = -T~ + ° ( h - l )  < v - ( h )  = - ~  + o(h -~) 

as h --+ 0 + and 

¢(h) = - (c~ /cF)h-1 /3  + o(h-~/3) ~ o 

as h--+ +c~, which implies that ¢(h) must stay in the region 

{(h,v)lv < v- (h)  < 0}; 

see Figure 1. Therefore, ¢'(h) > 0 and ¢(h) ~ 0. This yields 

/mY,(h)  
(5.15) - o c <  - -  < 0 ,  h E S + .  

ImYo(h) 

It follows from (5.15) that if there exists h = h~ such that ImJ~(h~) = O, then 

ImJo(h~) = 0, which implies W(h) - 0; cf. (5.13). Using (5.14) again, we obtain 

Im(Jo(h) /J , (h) )  = O,h • (0~+oc). On the other hand, the expansion (5.6) 

shows that Im(Jo(h)/ .]l(h))  7~ 0 as h ~ +oc, which yields a contradiction. The 

conclusion (ii) follows. 



140 Y. ZHAO Isr. J. Math. 

LEMMA 5.5: Suppose h ~ -1 /3 ,  h E 7?; then J:(h) ~ 0. 

Proo~ Let d~ be a big enough constant and do be a small enough constant. 

Denote by 7:): the set obtained from ~N { I hl < d~  } by removing a circle of radius 

do around ho = 0; see Figure 2. Consider the increase in the arguments of J: (h) 
along the boundary of D1 which has positive (counter clockwise) orientation. 

Lemma 5.2 shows that  Jl(h) is single-valued analytic in the set 7). It follows 

from (5.5) that the change of argument of Jl(h),  when h makes one turn along 

the circle Ihl = do, is close to zero. The expansion (5.6) yields that along the 

circle Ihl = d~,  the change in the argument of Jl(h) is close to 57r/3. At the 

end, on the upper and the lower side of open cut {hlh E (do, d~)}, ImJl(h) ~ O. 
Putting these data together yields that the increment in the argument of Jl(h) 

along the boundary of T)l is less than 57r/3+2~+e, lel << 1, as do --~ 0, d~  --+ + ~ .  

Using the argument principle, we obtain that J: (h) has at most one zero in 7):. 

The same is true, of course, for :D. Since J l ( - 1 / 3 )  = 0, the result of this lemma 

follows. 

Figure 2 

LEMMA 5.6: #G(h) < 4[(n - 1)/2] - 1, n > 4, h E E = ( -1 /3 ,  0). 

Proo~ Since J:(h) ¢ 0 in E, the number of zeros of G(h) is equal to the number 

of zeros of G(h)/Jl(h). Let Gl(h) be the analytic continuation of G(h)/J:(h) 
from E to the complex domain C, namely 

5 , ( h )  = + 
a:(h) 

By Lemma 5.1, (Jo(h)/Jl(h))lh=_l/3 = 1. Since J:(h) ¢ 0 in :D\{-1/3}, we 

conclude that G: (h) is single-valued analytic in ~.  
To estimate the number of zeros in :D, we should evaluate the increment in the 

argument of the function Gl(h) along the boundary of :D1. In what follows we 

split the proof into two cases. 
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CASE 1: Assume tha t  a2(h)  and/32(h) have no common  factor. 

Since Im(do(h)/dl(h))  ¢ 0 for h e S+ (resp. S_) ,  we know tha t  ImGl(h)  

has at  most  2[(n - 1)/2] - 1 zeros in S+ (resp. S_) .  The  expansion (5.6) shows 

tha t  G l ( h )  ~ h l as h -+ oc, where l < m a x { d e g a 2 ( h )  + 1/3, degfl2(h)} < 

2[(n - 1)/2] - 2/3.  This  implies tha t  along the circle Ih[ = doo, the change in 

the a rgument  of G l (h )  is close to 27r (2[ (n-  1 ) / 2 ] -  2/3).  Noticing tha t  the circle 

]hi = h0 has negat ive orientat ion,  it follows tha t  along the circle Ihl = h0 the 

increment  in the a rgument  of G l (h )  increases by no more  than  zero. By the 

same a rguments  as in the proof  of L e m m a  5.5, one gets tha t  the increment  in the 

a rgmnen t  of  G1 (h) along the boundary  of :Dr is close to 

r",'.-11 

and hence G l ( h )  has a t  most  4[(n - 1)/2] - 1 zeros i n / ) , ,  which implies tha t  

#G(h)  <_ #G, (h )  <_ 4[(n - 1 ) / 2 ] -  1 ,h  E Z = ( - 1 / 3 , 0 ) .  

CASE 2: Assume tha t  a2(h) and fl2(h) have common factor  G2(h),  deg G2(h) <_ 
m. 

Denote  G(h) = G~(h)G2(h). Using the same arguments  as in Case 1, we have 

#G2(h) < 4 [ ( n - 1 ) / 2 ] - 2 m - 1 ,  which yields #G(h)  <_ 4 [ ( n - 1 ) / 2 ] - m - 1 ,  tt E E. 

Proof of Theorem 1 for Q+: By (5.4) and L e m m a  5.6 one gets 

[o_3] 
#I (h )  = # J ( h )  <_4 - 1 +  - -y - -  + 1 = 5  - 1 ,  

where n _ 7. Using the same arguments ,  we obta in  #I (h )  < 4 for 1 < n < 6. 
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